A time-frequency based approach for generalized phase synchrony assessment in nonstationary multivariate signals
نویسندگان
چکیده
a r t i c l e i n f o a b s t r a c t This paper proposes a new approach to estimate the phase synchrony among nonstationary multivariate signals using the linear relationships between their instantaneous frequency (IF) laws. For cases where nonstationary signals are multi-component, a decomposition method like multi-channel empirical mode decomposition (MEMD) is used to simultaneously decompose the multi-channel signals into their intrinsic mode functions (IMFs). We then apply the Johansen method on the IF laws to assess the phase synchrony within multivariate nonstationary signals. The proposed approach is validated first using multi-channel synthetic signals. The method is then used for quantifying the inter-hemispheric EEG asynchrony during ictal and inter-ictal periods using a newborn EEG seizure/non-seizure database of five subjects. For this application, pair-wise phase synchrony measures may not be able to account for phase interactions between multiple channels. Furthermore, the classical definition of phase synchrony, which is based on the rational relationships between phases, may not reveal the hidden phase interdependencies caused by irrational long-run relationships. We evaluate the performance of the proposed method using the differentiation of unwrapped phase as well as other IF estimation techniques. The results obtained on newborn EEG signals confirm that the generalized phase synchrony within EEG channels increases significantly during ictal periods. A statistically consistent phase coupling is also observed within the non-seizure segments supporting the concept of constant inter-hemispheric connectivity in the newborn brain during inter-ictal periods.
منابع مشابه
Frequency flows and the time-frequency dynamics of multivariate phase synchronization in brain signals.
The quantification of phase synchrony between brain signals is of crucial importance for the study of large-scale interactions in the brain. Current methods are based on the estimation of the stability of the phase difference between pairs of signals over a time window, within successive frequency bands. This paper introduces a new approach to study the dynamics of brain synchronies, Frequency ...
متن کاملA Novel Method for Estimation of The Fundamental Parameters of Distorted Single Phase Signals
This paper proposes a new method for parameter estimation of distorted single phase signals, through an improved demodulation-based phase tracking incorporated with a frequency adaptation mechanism. The simulation results demonstrate the superiority of the proposed method compared to the conventional SOGI (Second-Order Generalized Integrator)-based approach, in spite of the dc-offset and harmon...
متن کاملEvaluation of the modified-S transform for time-frequency synchrony analysis and source localisation
This article considers the problem of phase synchrony and coherence analysis using a modified version of the Stransform, referred to here as the Modified S-transform (MST). This is a novel and important time-frequency approach to study the phase coupling between two or more different spatially recorded entities with nonstationary characteristics. The basic method includes a cross-spectral analy...
متن کاملDiscrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network
Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...
متن کاملAn Improved Automatic EEG Signal Segmentation Method based on Generalized Likelihood Ratio
It is often needed to label electroencephalogram (EEG) signals by segments of similar characteristics that are particularly meaningful to clinicians and for assessment by neurophysiologists. Within each segment, the signals are considered statistically stationary, usually with similar characteristics such as amplitude and/or frequency. In order to detect the segments boundaries of a signal, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Digital Signal Processing
دوره 23 شماره
صفحات -
تاریخ انتشار 2013